CLASS XII SAMPLE PAPER MATHS

Relation \& function (XII) sheet $1(1+4=5)$

1. Let $A=\{3,5\}$ and $B=\{7,11\}$. And $R=\{(a, b): a \in A$ and $b \in B, a-b$ is odd $\}$, then show that R is an empty relation.
2. Prove that a relation \mathbf{R} on the set \mathbf{Z} of all integers defined by: $(x, y) \in R \Leftrightarrow x-y$ is divisible by 4 is an equivalence relation on Z.
3. Let * be the binary operation ,defined as $\mathrm{a} * \mathrm{~b}=\operatorname{Max}(\mathrm{a}, \mathrm{b})$ then find $7 * 14$.
4. binary operation Show that $f: R-(-1) \longrightarrow R-(-1)$ given by $f(x)=x / x+1$ is invertible
5. 5.Let * be a defined by $a * b=2 a+b$ is * associative?
6. If $f: R \rightarrow R$ is defined by $f(x)=x^{2}-2 x+3$, write the value of $f(f(x))$.
7. How many relations can be defined from a non-empty sets \mathbf{A} to B if $n(A)=2$ and $n(B)=3$
8. Consider the binary operation *: $\boldsymbol{R} \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ and $\mathbf{O}: \boldsymbol{R} \times \boldsymbol{R} \rightarrow \boldsymbol{R}$ defined \mathbf{a} * $\mathbf{b}=|\mathbf{a}-\mathbf{b}|$ and $\mathbf{a} \mathbf{o b}=\mathbf{a}$ for all $a, b \varepsilon R$. Show that * is commutative but not associative, \mathbf{O} is associative but not commutative. Further, show that for all $a, b, c \in R, a^{*}(\mathbf{b o c})=\left(\mathbf{a}^{*} \mathbf{b}\right) \mathbf{o}(\mathbf{a} * \mathbf{c})$. Does \mathbf{O} distributes over *? Justify your answer.
9. Show that the binary operation * defined by $a * b=a b+1$ on Q is commutative.
10. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow\{a p p l e, \text { ball, cat }\}_{\text {defined by } f(1)=a, f(2)}$ $=b, \quad f(3)=c, g(a)=$ apple,$\quad g(b)=$ ball,$g(c)=c a t$. Show that f, g and gof are invertible. Find out f^{-1}, g^{-1} and
11. Show that operation * on $Q-\{1\}$, defined by $a * b=a+b-a b$ for all $a, b \in Q=\{1\}$ satisfies (i) the closure property, (ii) the associative property (iii) the commutative property (iv) What is the identity element? (v) For each $a \in Q-\{1\}$, find the inverse of a.
12. Consider $f: R \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is Invertible. Find the inverse of f.
D. If the function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=2 x^{3}+7$,Prove that f is one-one and onto function. Also find the inverse of the function f and $\mathrm{f}^{-1}(23)$
13 If $f(x)=\frac{4 x+3}{6 x-4} \quad$, find $f_{0} f(x)$
14 Let $\mathrm{A}=\mathrm{N} \times \mathrm{N}$ and $*$ be the binary operation on A defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})$. Show that $*$ is commutative and associative. Find the identity element for $*$ on A , if any.
15 Give an example to show that the relation R in the set of natural numbers, defined by $R=\left\{(x, y), x, y \in N, x \leq y^{2}\right\}_{\text {is not transitive. }}$
[^0]16 Let N be the set of all natural numbers and R be the relation on $\mathrm{N} \times \mathrm{N}$ defined by (a,b) $\mathrm{R}(\mathrm{c}, \mathrm{d})$ if ad $=\mathrm{bc}$. Show that R is an equivalence relation.
17 Give an example of a relation which is reflexive and transitive but not Symmetric;
18. Check whether theoperator \oplus definedby $a \oplus b=a+b-a b i s$
commutative and associative
19 show that the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{x}$ is a bijection
20 show that the function $\mathrm{f}(\mathrm{n})=\mathrm{n}-(-1)^{\mathrm{n}} \quad \forall \mathrm{n} \in \mathrm{N}$ is a bijection
21 if $f(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ and $g(\mathrm{x})=\log \mathrm{x}(\mathrm{x}>0)$ find $f o g$, gof is $f o g=g o f$
22 if $f(\mathrm{x})=\sqrt{ } x(\mathrm{x} \geq 0)$ and $g(\mathrm{x})=\mathrm{x}^{2}$-1 are two real function find fog, gof is fog $=g$ of
Example 41 If R_{1} and R_{2} are equivalence relations in a set A, show that $R_{1} \cap R_{2}$ is also an equivalence relation.
Example 48 Show that the number of equivalence relation in the set $\{1,2,3$) containing
$(1,2)$ and $(2,1)$ is two.
9. Given a non-empty set X, consider the binary operation *: $\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{X}) \rightarrow \mathrm{P}(\mathrm{X})$ given by $A * B=A \cap B \forall A, B$ in $P(X)$, where $P(X)$ is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in $\mathrm{P}(\mathrm{X})$ with respect to the operation *.

MATH, PHYSICS \& CHEMISTRY

MATH \& SCIENCE
Test on Every Alternate Sunday Free Worksheet on Every Chapter EXPERIENCED FACULTY

F-236, Delta-I, Greater Noida Ph: 9958598395, 9650479998

[^0]: CBSE Sample Papers | CBSE Guess Papers | CBSE Practice Papers | Important Questions | CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus | Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

